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Explanation-based learning has been shown to be an effective rmethod for
ope0-,ationalising concepts implicit in a problem solver's knowledge base.
Demonstrations have thus far used mainly deductive techniques over complete
domain theories and with respect to limited tasks. This paper outlines some early work
on augmenting EBL with a simple inductive capability and applying it to the real world
domain of modelling the development of Piagetian number conservation concepts in
children.



MODELLING HUMAN COGNITIVE DEVELOPMENT
WITH EXPLANATION-BASED LEARNING IN SOAR

Tony Simon

Department of Psychology
Carnegie Mellon University

Pittsburgh PA 15213
USA

tonys@cs.cmu.edu

Abstract

Explanation-based learning has been shown to be an effective method for

operationalising concepts Implicit in a problem solver's knowledge base.

Demonstrations have thus far used mair'ly deductive techniques over complete domain

theories and with respect to limited tasks. This paper outlines some early work on

augmenting EBL with a simple Inductive capability and applying it to the real world

domain of modelling the development of Piagetian number conservation concepts in

children.

1. Introduction
The .ast few years has seen a profusion of work in Explanation-Based learning

(EBL)4[1 9]kThe task of an EBL system is to accept a training instance and show that it

is or is not a member of a given concept, thereby automating the classification process

for future instances. This is done by problem solving over a domain theory which

supports a mapping between the predicates of the training instance and those of the

concept definition. Resulting generalisations must comply with an operationality criterion W

which limits the operationalised concept description to one which is easily evaluated for <;

new instances. t~K v ~,~'

Most EBL systems iliave been developed using either very limited tasks such, as 0

stacking blocks [9], or limited approximations of real world tasks such as learning , -
concepts that define suicide or kidnappings [1]. This approach enabled researchers to
supply fixed domain theories which were deductively complete, at least for a limited
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range of examples. As a result, the applicability of any EBL system was limited and so a

current concern is to augment EBL with inductive capabilities so that it is possible to

work in more complex and unpredictable domains [13].

In this paper I shall outline the early stages of work to extend the use of EBL in a

novel direction. The EBL approach is applied to the modelling of a domain that is both a

real world learning problem and one which has been extensively studied by the field of

developmental psychology. This is the formation of Piagetian number conservation

concepts in children. In order to model the development of these concepts the EBL

method is adapted by replacing a complete domain theory with a very minimal one.

Along with that minimal domain theory is supplied the capability for induction by simple

causal attribution. The claim is that the combination of EBL with a novel performance

model of quantity conservation development results in one of the first simulations of this

heavily researched, yet ill-explained, developmental phenomenon.

2. A Model of Conservation Development
Work on Piagetian conservation concepts was for a long time a major preoccupation

for the field of cognitive developmental psychology. This is mainly because one of the

central tenets of Piagetian theory [11] is that the acquisition of conservation concepts is

a critical milestone in the child's development of mature conceptual capabilities.

Conservation concepts can be defined as the understanding that, in the face of certain

irrelevant (though often misleading) transformations - such as spreading a row of

objects - some aspects of those objects - such as numerical value - remain invariant.

In a typical experiment on number conservation a child is shown two rows of objects

generally with the same number of objects in each row. The objects are usually lined

up in 1-to-1 correspondence. The child is asked if the two rows have the same number

of items in them. Once this is agreed, one of the rows is transformed (usually by

lengthening or shortening) and the child is asked the "conservation question"; whether

the rows still have the same number of items in them. Children who consistently

answer that the two rows do have the same number, and can explain why, are said to

have acquired the conservation concept with respect to number. Those who are misled
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by the perceptual features and say that the longer row has more objects are classified

as non-conservers.

The critical shift in the development of conservation concepts is for the child to stop

attending to the details of the objects themselves and to focus on the transformation

that was applied to them. Thus, what is required is the learning of the class of

operations that affect a given dimension (such as quantity) and the class of operations

that do not affect it. In this way the child can infer the effect on quantity simply by

observing the action applied to the materials. Once a concept such a0 "quantity-

preserving transformation" has been learned, it can be applied to objects of any quantity

to assess conservation. Many experiments havo been carried out on a wide range of

c'rnservation concepts for number, mass, area, volume and even existence [3].

Concentrating on conservation of number and other kinds of quantity one can observe

that a set of regularities exist in the literature. By a regularity we mean a finding that is

consistently reported and for which there is little or no disconfirming evidence. The four

main regularities are presented below.
1. Young children in the 3-6 year-old age range are able to obtain specific

quantitative values for small sets (e.g. up to about 5) of objects e.g. [2).

2. Young children in the 3-6 year-old age range are unable to obtain specific
quantitative values for larger sets of objects e.g. [4].

3. Children who have not acquired the conservation concept nevertheless
can still correctly answer the conservation question when they can obtain
a specific quantitative value for objects concerned e.g. [15].

4. Children who have not acquired the conservation concept cannot correctly
answer the conservation question when they cannot obtain a specific
quantitative value for objects concerned e.g. [5].

To explain these regularities I have formulated the following model to account for the

development of quantity conservation; I shall call it the Quantification model (or Q-

model). The Q-model says that children learn quantity conservation by generalising the

effects of transformations on countable arrays into the classes of quantity-preserving

and quantity-modifying transformations. This comes about in the following way. The

child computes a specific value for a given set of objects and then recomputes a value

for them after some kind of transformation has occurred (such as building a tower with a
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pile of blocks or setting a table with silverware from a drawer). Then, if the two values

match, a plausible inference can be made that the quantity was not affected by the

transformation concerned. The 0-model assumes that the child forms conservation

concepts by "explaining" such outcomes in terms of the actions and by generalising

over the specific objects and amounts involved in the transformations. Eventually a

transformation, such as spreading, will be represented without any reference to specific

objects or agents and it will always be expected to have a quantity-preserving effect [6].

According to the 0-model, it is through a process of explanation-based learning that

children acquire conservation concepts that enable them to infer certain outcomes by

attending to the transformation alone. So, just is in other EBL models, here the

quantitative effect of operationalised actions can be easily determined, even for material

where a specific quantitative value cannot be directly computed.

Further support for this model comes in the form of two more regularities that can be

observed in the conservation literature.
5. Correct answers to conservation of quantity are achieved on tests of

discrete stimuli (e.g. buttons, coins, shapes) before tests of continuous
stimuli (e.g. liquids) e.g. [15].

6. Training conservation on discrete quantities alone transfers to continuous
quantities once the conservation concept has been formed e.g. [17].

Both of the above regularities provide evidence for the claim that the learning and

generalisation of the effects of various transformations takes place only in cases where

the materials are countable1 . Then, once the generalised conservation concept has

been learned, it transfers to non-countable materials.

3. Modelling Development with Explanation-Based Learning
In the rest of this paper I will show that combining a slightly modified EBL approach

with the 0-model provides support for this theory of conceptual development. The

simulation model that I shall describe here, called ABC.Soar for Analysis-Based

Concept formation, is being developed using the Soar architecture [7]. I shall briefly

review the mapping of EBL into Soar as described by Rosenbloom and Laird [12] before

I1 use the term counting to Include "subitizing", a capability to perceptually apprehend small numbers.
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providing an abstracted description of the initial stages of the formation of quantity

conservation concepts by an early version of ABC.Soar.

Rosenbloom and Laird [12] have shown how EBL maps directly into the Soar

architecture [7]. Using the "Safe-to-Stack?" example [9] they describe a Soar system

that has an operator, "Safe?(x,y)", which examines Information about a training Instance

and can be Implemented when it can compute if it is safe to stack x on y. Initially, the

Instance and concept definition representations are not stated In comparable terms.

Thus the operator cannot evaluate the Instance In terms of the concept definition and so

t fails to apply. This results in the creation of a subgoal. Rosenbloom and Laird show

that the domain theory is a problem space that can be selected for that subgoal and

which contains the required operators to translate the goal concept definition Into those

predicates that describe the Instance. Once that has been done the "Safe?" operator

can be applied to compute whether the Instance fits the definition or not. The chunk that

Is created by the successful termination of that subgoal then describes the newly

operationaltsed concept definition. This is stated in terms only of the critical predicates

that were required in the computation performed by the "Safe?" operator and which

depend on those that existed before the subgoal was created.

Since the point of this paper is to illustrate the application of EBL to modelling the

formation of conservation concepts, I will only briefly discuss the other aspects of the

model that are not directly involved with this process. The top goal of ABC.Soar is to

observe a transformation to a set of objects (R2 below) and to return a judgement about

whether the number of objects Is the same as it was before the transformation took

place. Below is a schematic representation of the task.

Timel Transformation Time2

R1 0 0 0 0 0 0 0 0 0 0
R2 00000=> "PRADING" > 0 0 0 0 0

ABC.Soar splits into a performance and an acquisition component as is common for

EBL systems [1]. The top problem space Implements the performance component.

There Is an operator to observe and represent the transformations that are carried out

and a response operator that returns a judgement about the numerical effect of
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transformations. A comprehension operator is applied to each new input. This applies

knowledge that the system has about such an input so that it can be understood and

acted upon. If not enough is known about the transformation to produce a conservation

judgement then the Comprehend operator will fail to apply and will create an impasse.

In the resulting subgoal the acquisition component works to augment the problem

solver's knowledge to the extent that the Comprehend operator can interpret the input

and the response operator can state the inferred effect of the transformation.

Using the task represented above, we shall assume that the Comprehend operator

has created such an impasse. The comprehend problem space will be selected in order

to try to implement the Comprehend operator. Given sufficient knowledge, the

Categorise-input operator will be selected to classify the transformation (in this case as

an instance of a concept that we will call "spreading-actions"2). Once this has been

done the Same-number? operator should be able to infer what the effect of such an

action is by access to the classes of transformations (or conservation concepts) that it

has already learned. In either case, should the operator fail to apply due to a lack of

knowledge it will create a further impasse. At that point, ABC.Soar will try to define or

revise concepts that either merely describe classes of actions, or ones that capture the

numeric effects of those actions.

There is not the space here to address the formation of action concepts and it is dealt

with in detail elsewhere [16]. Instead we shall continue the example from the point

where the action has been categorised as an instance of the concept "spreading-

actions". Having categorised the transformation the Same-number? operator is selected

to produce an answer to the conservation question. However, the problem so!ver does

not know the expected numerical effect of the spreading transformation and so the

operator fails to apply. The impasse that results signals the initiation of the process of

creating an explanation for whether this transformation is an instance of the "quantity-

preserving" or "quantity-modifying" class of actions.

2Intemally, the system uses gensyms In place of such names. Concepts are named here for ease of
reading.
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Just as in the mappirng illustrated by Rosenbloom & Laird [12], the domain theory for

this task will be the -.,t of operators in the domain-theory problem space that is selected

for this subgoal. An explanation of the conservation concept is the set of those

operators that fire to implement the Same-number? operator. The operationality

criterion relates to the fact that those operators will have to augment the representation

on the state with predicates in which the implementation productions for the Same-

number? operator are stated.

3.1. Domain Theory

The domain theory that is provided for ABC.Soar is extremely simple. it consists only

of four operators. I shall state them below In a simplified pseudo-code form and

instantiate them with some example values.

Quantify (v) 1
transform(t,r2) /\ -nuznber-time2(rl,vl) /\ -number-time2(r2,v2)

-> number-time2(rl,vl) /\ numbor-time2(r2,v2)

Changed? (r, v) 2
number-time2(rl,x) /\ number-time2(r2,x) /\ name(x,5) a

-> unchanged (r2, v)
number-time2(rl,x) /\ nuber-time2(r2,y) /\ name(x,5) b

/\ name (y, 6) -> changed(r2,v)

Link (t, v) 3
transform(t,r) /\ number-time2(r,v2) /\ -link(t,v2)

-> link(t,v2)

Effect? (t, v2) 4
transform(t,r) /\ link(t,v2) /\ unchanged(r,v2) a

-> Same-number (v2, true)
transform(t,r) /\ link(t,v2) /\ changed(r,v2) b

-> Same-number (v2, false)

Operator #1 enables the problem solver to count both rows of up to five objects after

the transformation 3 . The capability to quantify only up to five objects is justified by the

regularities described above. Operator #2 is implemented by one of two productions

depending on whether the values of the two rows are the same or not. Operator #3 is a

3Thls operator is a gross oversimplification of the quantification process but Is sufficient to serve the
purpose of a demonstration in this example system.
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causal attribution operator very like those employed by Lewis [8] for creating new

procedures in Human-Computer interaction tasks. It also reflects the sophisticated

causal reasoning abilities of young children [14]. This operator fulfills the inductive role

of attributing changes in the materials, such as those relating to number (as in the

example above) and length, to actions on those same materials. Previously those

actions would have carried no representation of their effects on such attributes.

Operator #4 implements the Same-number? operator in terms of the causally attributed

numerical effects of transformations. Operators #1 & #3 are default operators. This

means that, even if applicable, they will only fire if no other operators do. In this way

there is a simple means of building up the domain theory using a weak method.

However, if any learned knowledge is applicable, the operators that it recommends will

be applied in preference to the default operators.

3.2. Conservation Concept Formation

Recall that ABC.Soar has categorised the transformation as "spreading" but that the

Same-number? operator has failed to apply and created the subgoal in which the

domain-theory problem space has been selected. What follows is an abstracted trace

of the formation of the conservation concept for the task represented above4 . Having

observed the spreading action, the outcome that the transformee row is now longer than

the untouched row has been added to the representation. The goal for the child is to

answer whether there is still the same number of objects in the two rows as a result of

the transformation. This goal will have the effect that concepts formed concerning the

effects of transformations in this activity will be organised around their numerical

outcomes [10].

The representation that is encoded by ABC.Soar is presented here in a very simplified

manner but one that is sufficient for the purposes of this paper. Below is a

representation of the state after observing and categorsing the transformation.

Name (a, row1) Name (b, row2) Colour (a, red) Colour (b, blue)

4The reader should note that the difference between this process and the standard EBL case 's that
the problem solver has no pre-existing abstract description of the target concept of, for example,
quantity-preserving transformation".
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Objects (a, square) Objects (b, circle)
Transform (t,b) Name (t, Spreading)
Number-Timel (a, x) Number-Timel (b, x)
Length-Timel (b, y) Length-Time2 (b, z)
Name(x,5) Name(y,10) Name(z,15)

Link (x, y)
transform(t,r) /\ length-time2(r,15) -> link(t, 15) 5

Quantify (x)
transform(t,r2) -> number-time2(rl,5) /\ number-time2(r2,5) 6

Link (x, y)
transform(t,r) /\ number-time2(r,5) -> link(t,5) 7

Changed? (r, v)
number-time2(rl,5) /\ number-time2(r2,5) -> unchanged(r,5) 8

Effect? (t, 5) 9
transform(t,r) /\ link(t,5) /\ unchanged(r,5)

-> same-number (5, true)

The trace above describes the problem solving in the domain theory space which

creates an initial definition for the concept of "quantity-preserving transformation".

Production #5 links the length outcome to the transformation but that does not enable

the Same-number? operator to fire because no numerical effect was established. (The

Changed? operator firing for this outcome is not shown). The only applicable operator

now is Quantify and its application results in a numeric outcome for each row. This

enables a new link *o be created (productions #6-7) for the row that was transformed.

The Changed? operator now applies and computes an unchanged numeric value for the

transformed row by comparing its number to the untouched row (production #8). Now

the state has a sufficient representation to make the Effect? operator applicable. It

applies and produces the result that the transformation did not cause a change in the

quantity of the objects (production #9). This terminates the subgoal because the same-

number predicate implements the Same-number? superoperator. As is always the case

in Soar, successful termination of a subgoal causes a chunk to be built to summarise

the processing in the subgoal. Soar's backtracing process for building chunks not only

determines the explanation structure but it also defines the conditions for the new rule

by computing dependency to those predicates that existed before the impasse was

created [12]. In this case the transformation and the final values of the compared rows

are the critical elements. So the result is an initial operational definition of a quantity

conservation concept stated in the form of the rule:
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Same-Number? (r, 5)
transform(t,r2) /\ number-time2 (rl,5) /\ number-time2 (r2,5)

-> same-number (5, true)

Where t = "spreading-actions"

Having returned this result the response operator can apply and report that the

number was unaffected by the spreading transformation. This satisfies the top goal of

ABC.Soar. However, the problem solver is still far from performing like a perfect

conserver. It has built two concepts, both of which are over-specific. The "spreading-

actions" concept is stated only in terms of the details of the initial instance. The

conservation concept states only that spreading causes conservation for collections of

five objects. Yet, these concepts will be used and generalised. Future instances of

spreading countable rows of different numbers will cause the above conservation

concept to be variabilised. Each time spreading is seen, conservation concepts with

different values will be recalled. These will be generalised, leading to a rule which states

that spreading any number of things leads to no change in that number. So, as it

encounters difficulties like the inability to categorise new instances or the making

incorrect Inferences due to incomplete concept definitions, ABC.Soar will impasse into

its acquisition component. Here it can deliberate over the problem at hand and build

chunks for the solutions it finds. Thus, ABC.Soar will exhibit a graceful integration of

deliberate and automatic processing which is mediated by the interaction of its

knowledge and the problems that are encountered. Expertise acquisition will be gradual

and experience-based, just as any plausible model of cognitive development should be.

4. Discussion

This paper has illustrated how the EBL approach can be used to model a real-world

example of conceptual development in children. The main modification to the standard

EBL technique was in terms of the domain theory. In ABC.Soar this is cast as one

simple domain-specific capability - quantification - and a general weak method - causal

attribution - for linking outcomes to actions in the task domain. This enables a sort of

bootstrapping of the domain theory that can be augmented through application to

subsequent input. If the knowledge that has been acquired is adequate then the
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problem solver can proceed relatively effortlessly. However, whenever difficulties are

encountered, ABC.Soar will create impasses leading to the definition of new concepts

or the revision of existing ones.

The current implementation of ABC.Soar was a simplified experiment to test the

feasibility of this approach. As such it is incomplete in a number of senses. One aspect

is the organisation and accessing of concepts. As ABC.Soar's knowledge grows, a

more sophisticated access mechanism will be required to enable the system to recall

relevant concepts and reject ones that appear irrelevant. Cued recall in Soar's

datachunking mechanism provides a candidate solution. Related issues are the revision

and organisation of concepts which both require further research. Of course ABC.soar

cannot be considered a complete model of the development of conservation concepts

until it can also account for the development of the quantification capability that it

currently employs as part of the minimal domain theory.

Nevertheless the demonstration reported here is encouraging in two respects. First,

the construction of ABC.Soar suggests that, without much modification it is possible to

extend the EBL approach to real world domains. Second, the combination of a novel

performance theory for a large body of psychological data and EBL provides support for

a theory of conceptual development which is a significant departure from previous

models. Conservation development is often explained in terms of the learning about the

reversibility of operations; where the child comes to represent the fact that

transformations can be reversed and the original state of affairs will be restored. It is

hoped that ABC.Soar will inspire the development of other new models by applying

machine learning techniques to phenomena in human cognitive development where

they can be of great assistance in the much needed process of formalisation.

This work was supported by the Personnel and Training Research
Program, Psychological Sciences Division, Office of Naval
Research under contract number N00014-86K-0349.
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